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Interest in the toxicological aspects of oxidative ste has grown in recent years, and research has
become increasingly focused on the mechanistic aspects of oxidative damage and cellular
responses in biological systems. Toxic consequences of oxidative stress at the subcellular level
include lipid peroxidation and oxidative damage to DNA and proteins. These efficts are often
used as end points in the sudy of oxidative stress. Typically, mmmali species have been used
as models to study oxidative istress and to elucidate the mechanisms underlying cellular dama
and response, largely because of the interest in human health issues surrounding oxidative stress.
However, it is becoming apparent that oxidative stress also affect aquatic organisms exposed to
environmental pollutants. Resarch in fish has demonstrated that mammalian and piscine sys-
tems exhibit similar toxicolocal and adaptive responses to oxidative stress. This suggests that
piscine models, in addition to traditional mammalian modes, may be usefil for fiuther under-
standing the mechanisms underlying the oxidativ stress response. Key word anioidants, fish,
lipid peroidatiion, mammals, oxidative DNA damage, oxidative stress, reactive oxygen species.
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The discovery of superoxide dismutase by
McCord and Fridovich (1) provided the
first evidence implicating radicals and
oxidative stress as important sources of bio-
logical injury. Oxidative stress occurs when
there is an imbalance in the generation and
removal of radical species within an organ-
ism. The majority of these radicals involve
oxygen and are referred to as reactive oxy-
gen species (ROS) (2). Because of the
potential for ROS to damage tissues and
cellular components such as membranes
(3,4), DNA (5-7), and proteins (8-10),
oxidative stress has become a topic of signif-
icant interest in both mammalian and
aquatic toxicology.

The majority of animal studies focusing
on oxidative stress have employed mam-
malian cell or organ models to analyze the
oxidative capacity of a particular toxicant or
to evaluate the efficacy of a compound, such
as an antioxidant, to protect from toxicant-
mediated oxidative damage. Inflammation,
ischemic reperfusion injury, aging, and car-
cinogenesis have all been linked to oxidative
stress in mammalian systems (10-13).
However, while the breadth of knowledge in
mammalian systems is great, a considerable
amount remains to be understood regarding
cellular response mechanisms, disease etiolo-
gy, and repair processes within cells. Notably,
there is a growing literature on the effects of
oxidative stress in aquatic organisms, and it is

becoming apparent that the general mecha-
nisms of oxidative toxicity in both mam-
malian and piscine systems are similar, with
comparable lesions and responses serving as
markers ofoxidative stress (14). Consequently,
evidence suggests that fish have the potential
to serve as suitable model organisms for
studying the mechanistic aspects of oxidative
toxicity, such as chemical carcinogenesis and
damage repair, that are also relevant to bio-
medical toxicology.

Sources of Reactive Oxygen
Species
Several basic cellular processes lead to the
production of ROS within a cell. Cellular
respiration involves the reduction of molec-
ular oxygen (02) to water in the electron
transport chain. This reduction occurs
through four one-electron reductions
resulting in the formation of reactive, par-
tially reduced intermediates such as the
superoxide anion radical (02), hydrogen
peroxide (H202), and the hydroxyl radical
(HO) that may act as prooxidants:

02 + ec 02- (1)
2H+02; + e > H202 (2)
H+

H202 + e- > HO'+ H20 (3)
H+

HO+&-*H20 (4)

One to 5% of these ROS may escape the
electron transport chain and damage cellu-
lar components (15).

Several oxidizing enzymes produce ROS,
comprising a second source of ROS within
cells. Diamine oxidase, tryptophan dioxyge-
nase, xanthine oxidase, and cytochrome P450
reductase can generate 02- while enzymes
such as guanyl cyclase and glucose oxidase
generate H202 (16-18). Similarly, nitric
oxide synthase produces 02- under low argi-
nine conditions (19). Other enzymatic
processes produce extracellular 02- and
indude the activity of the leukotriene genera-
tor lipoxygenase (20) and the prostaglandin
generator cyclooxygenase (21). The enzymat-
ic production ofROS is of additional interest
in toxicology because some of these enzymes,
such as cytochrome P450, are involved in the
metabolism ofxenobiotics (14,24.

Some radicals serve useful purposes. For
instance, during the respiratory burst of
leukocytes in immune-mediated host
defense, monocytes, neutrophils, and
macrophages produce 02-, nitric oxide
(NO), and peroxynitrite (ONOO-) (23).
This response is triggered by stimulation of
enzymes such as NADPH-oxidase (24), and
these ROS are used as cytotoxic agents
against pathogenic organisms (23). In addi-
tion to its use in the immune response, NO
can act as a neurotransmitter and muscle
relaxant (25), while levels of other radicals
play a role in the control of the transcription
factors nuclear factor KB (NF-iB) and acti-
vator protein-1 (AP-1) (26). Additionally,
superoxide has been proposed to terminate
lipid peroxidation and may be mitogenic as
well (27). The mitogenic function of 0; is
supported by a recent finding suggesting
that 02- may be a mitogenic signal in ras-
mediated cellular transformation (28).
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Xenobiotics comprise a third source of
ROS because some xenobiotics can enhance
the production of oxyradicals within cells.
This may occur through processes such as
inhibition of mitochondrial electron trans-
port and subsequent accumulation of
reduced intermediates (29), inactivation of
antioxidant enzymes such as catalase
(30,31), and depletion of radical scavengers
(32-35). Of particular interest in toxicology
are xenobiotics that are capable of redox
cycling (Fig. 1). Quinones, some dyes,
bipyridyl herbicides, some transition metals,
and aromatic nitro compounds comprise
dasses ofcompounds known to redox cycle.
Redox cycling involves the univalent reduc-
tion of the xenobiotic to a radical interme-
diate by enzymes such as xanthine oxidase
and NADPH-cytochrome P450 reductase.
This radical intermediate then transfers an
electron to 02, producing O2- and regen-
erating the parent compound. Thus, a sin-
gle molecule of parent compound can gen-
erate many oxyradicals. Furthermore, this
process occurs at the expense of cellular
reducing equivalents, such as NADPH,
which can have consequences for other
metabolic processes (36-38).

Significance of Reactive
Oxygen Species
Once produced, ROS may damage cellular
components and tissues. Superoxide and

HO are two of the most studied ROS in
this respect. Superoxide oxidizes cate-
cholamines, tocopherols, ascorbate, and thi-
ols (39,40). Superoxide can also inactivate
enzymes such as catalase (31) and peroxidas-
es (30). Furthermore, 02- inactivates [4Fe-
4S]-containing dehydratases (e.g., aconitase,
fumarase) and releases Fe2+ (41).

Much of the toxicity of O02- may be
explained by its reaction with other ROS,
such as H202, to form more reactive ROS.
Of particular biological importance is the
production and toxicity of HO (Eq. 5 and
6). One of the most potent oxidants known,
HO reacts indiscriminately with cellular
components such as lipids, DNA, and pro-
teins. Because of its high reactivity, HO has
an in vivo lifetime of only a few nanosec-
onds (42). HO may be produced by the
reaction of 02 and H202 in the Haber-
Weiss reaction (Eq. 6) (43).

2 2- + 2H+- H202 + 02 (5)
*02- + H202 -* HO + OH- + 02 (6)

Because this reaction is kinetically slow
(16), transition metals (e.g., iron and cop-
per) often serve as catalysts. The iron-cat-
alyzed Haber-Weiss reaction is depicted in
Equations 7 and 8. Equation 8 is also
known as the Fenton reaction (44).

Fe2+ + H202 -+ HO + OH- + Fe3+ (8)

The polyanionic nature of cell membranes
and DNA provides a structure for the
adherence of metal cations. Thus, HO
produced in the Fenton reaction would be
expected to occur adjacent to these critical
biological targets, resulting in subsequent
oxidation of lipids and DNA (45-44). The
mechanistic aspects of oxidative damage to
lipids and DNA are discussed below.

Lipidperoxitation. The important role
of lipids in cellular components emphasizes
the significance of understanding of the
mechanisms and consequences of lipid per-
oxidation in biological systems. Polyunsat-
urated fatty acids (PUFAs) serve as excellent
substrates for lipid peroxidation because of
the presence of active bis-allylic methylene
groups. The carbon-hydrogen bonds on
these activated methylene units have lower
bond dissociation energies, making these
hydrogen atoms more easily abstracted in
radical reactions (48). The susceptibility of
a particular PUFA toward peroxidation
increases with an increase in the number of
unsaturated sites in the lipid chain (49.

Autoxidation of lipids in biological sys-
tems proceeds via a chain reaction consisting
of three phases: initiation, propagation, and
termination. Initiation of lipid peroxidation
in vivo has not been extensively studied and
is under much debate (50,51). This phase of
lipid peroxidation may proceed by the reac-
tion of an activated oxygen species such as
singlet oxygen (102), ,2- or HO with a
lipid substrate or by the breakdown of pre-
existing lipid hydroperoxides by transition
metals. In the former case, peroxidation
occurs by abstraction of a hydrogen atom
from a methylene carbon in the lipid sub-
strate (LH) to generate a highly reactive car-
bon-centered lipid radical (L).

In the propagation phase of lipid perox-
idation, molecular oxygen adds rapidly to

LH < - 9 °02
l Propagation

LOOH
LOO'

Figure 1. Redox cycling, which includes radical formation, scavenging, and effects. Abbreviations: GSH,
glutathione; GSSG, glutathione disulfide. Adapted from Kappus (163).

Figure 2. Overview of lipid peroxidation.
Abbreviations: NRP, nonradical product; LOOH, lipid
hydroperoxide; a-TOH, a-tocopherol; a-TO, a-TOH
radical; LH, lipid substrate; LOO, lipid peroxyl radi-
cal. Adapted from Waldeck and Stocker (164\.
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L at a diffusion controlled rate to produce
the lipid peroxyl radical (LOOG) (4). The
peroxyl radical can abstract a hydrogen
atom from a number of in vivo sources,
such as DNA and proteins, to form the pri-
mary oxidation product, a lipid hydroper-
oxide (LOOH). Alternatively, antioxidants
such as a-tocopherol (a-TOH) can act as
excellent hydrogen atom donors (52), gen-
erating LOOH and the relatively inert
a-tocopherol phenoxyl radical (a-TO ). In
the absence of antioxidants or other
inhibitors, LOO can abstract a hydrogen
from another lipid molecule (LH), produc-
ing another highly reactive carbon centered
radical (L), which then propagates the rad-
ical chain (Fig. 2).

Transition metals are of particular
interest to lipid peroxidation. In transition
metal-catalyzed lipid peroxidation, HO is
thought to be the primary initiating radical
species (51). However, both ferrous (Fe2+)
and ferric (Fe3+) iron, in addition to
increasing the production of initiating
hydroxyl radicals, can catalyze the propaga-
tion of the lipid peroxidation chain by
decomposing LOOH oxidation products
(53,54). The resulting alkoxyl (LO ) and
peroxyl (LOO') radicals are able to initiate
new radical chains by interacting with
additional lipid molecules. Other redox
active metals such as copper ions may cat-
alyze this reaction, but the availability of
these ions under physiological conditions is
yet unclear (23).

Termination of lipid peroxidation occurs
via the coupling of any two radicals to form
nonradical products. Nonradical products
are stable and unable to propagate lipid per-
oxidation chains. Several extensive reviews of
the chemistry of free radical oxidation of
monoene and polyene unsaturated lipids
have been discussed by Porter (5557).

Repair oflipidperoxidation. Lipid per-
oxidation products modify the physical
characteristics of biological membranes
(58). For instance, incorporation of
LOOH changes the physical structure of
the membrane by decreasing the fluidity
and increasing the permeability (59). Thus,
the removal of the lipid peroxidation prod-
ucts from the membrane is necessary to
repair the membrane damage (58) and is
accomplished by two separate enzymatic
systems: the sequential action of phospholi-
pase A2 with glutathione peroxidase (60)
and phospholipid hydroperoxide glu-
tathione peroxidase (61).

Phospholipases are activated by lipid
peroxidation (62). Phospholipase A2 (PLA2)
shows a substrate specificity for peroxidized
phospholipids in membranes, catalyzing the
hydrolysis of the phospholipid hydroperox-
ides to the hydroperoxy fatty acids (63-65).

Once released, the fatty acid hydroperox-
ides may undergo a reaction with glu-
tathione peroxidase (GPx) to form stable,
reduced hydroxy products (58,66). This
terminates lipid peroxidation. A second
enzymatic system eliminates phospholipid
hydroperoxides from lipid membranes
through the direct reaction of phospholipid
hydroperoxide glutathione peroxidase with
the esterified phospholipid hydroperoxides.
This in situ reduction of the phospholipid
hydroperoxides to phospholipid hydroxides
while still incorporated in the membrane
structure also results in the halt of mem-
brane lipid peroxidation (67).

Detection oflipidperoxidation. Because
direct analysis of endogenous primary lipid
peroxidation products is complicated, the
extent of lipid peroxidation is typically
assessed by measuring levels of secondary
oxidation products. The primary lipid oxi-
dation products, LOOH, are unstable and
decompose to form secondary products such
as aldehydes and ketones through a multi-
tude of reaction pathways (68). The result-
ing diverse array of breakdown products,
coupled with the small in vivo concentration
of these products, presents a challenge for
accurate quantification of lipid peroxidation.
The most used assay for lipid peroxidation is
the thiobarbituric acid reactive substances
(TBARS) test. Aldehydic compounds are
reactive and highly cytotoxic (69-71), and
the TBARS test relies on the production of a
colored adduct from the reaction of lipid
peroxidation products and thiobarbituric
acid (72). This test is most frequently used
as a measure of malondialdehyde (MDA), a
secondary lipid oxidation product.
However, because thiobarbituric acid reacts
with a number of other oxidation products
including 4-hydroxynoneal, other unsaturat-
ed aldehydes (73), and endoperoxides from
enzymatic routes (74), this test is nonspecif-
ic (75). Therefore, the TBARS test can only
give a crude measure of lipid peroxidation.
Consequently, as an assay for MDA, the
TBARS test generally gives higher values for
TBARS reactivity compared to more rigor-
ous tests for MDA (76,77).

Another crude measure of lipid peroxi-
dation is the determination of diene conju-
gation. Generation of lipid peroxides typi-
cally involves the formation of conjugated
dienes from the PUFA substrate. These
conjugated hydroperoxide products absorb
UV light in the region of 230-235 nm.
However, many other endogenous materials
also absorb UV light in the region of inter-
est, creating a high background absorbence.
Thus, this analytical technique is relatively
insensitive to small changes in product for-
mation (78). While these crude methods of
measuring lipid peroxidation may be less

sensitive, they are often adequate for the
question at hand and are more easily per-
formed than more rigorous alternatives.

Oxyradical-generated DNA damage.
DNA is another key cellular component
that is particularly susceptible to oxidative
damage. The primary oxidant responsible
for DNA damage is HO, as neither H202
nor peroxyl radicals react directly with
DNA (79). The heterogeneity of DNA
allows for many susceptible sites for HO
attack, including the nitrogenous bases and
the sugar-phosphate backbone. The rate of
HO reaction with bases is approximately
five times greater than that with the back-
bone (80). Lesion production for both por-
tions of the DNA structure have been thor-
oughly reviewed (6,7).

Generally speaking, HO attack on
DNA bases leads to three classes of dam-
age: hydroxylation, ring opening, and frag-
mentation. The resulting lesions are usually
products of the secondary reactions that
occur after the initial radical attack.
Although over 100 different DNA lesions
may result from HO' attack on DNA bases
(81), the lesions most commonly used as
biomarkers are 8-hydroxy-2'-deoxyguano-
sine (8-OHdG) and 2,6-diamino-4-
hydroxy- 5-formamidopyrimidin e
(FapyGua). Both 8-OHdG and FapyGua
result from HO attack on deoxyguanosine,
and the differentiating step between them
is a secondary reaction. The potential steps
of formation for both biomarkers are illus-
trated in Figure 3. These lesions may be
directly detected in the DNA or assayed in
urine. Specific analytical methods that
detect biomarkers of oxidative damage to
DNA bases have been reviewed (82).

In addition to producing direct damage
to bases, a transient radical species generat-
ed within the DNA base may covalently
bind with other macromolecules within the
cell, forming intermolecular complexes.
Perhaps the most important example of
this phenomena is the protein-DNA cross-
link. While the formation of such cross-
links has been reviewed (83), little is
known about the significance of the differ-
ent classes and structures (84).

Hydroxyl radicals may also attack the
sugar-phosphate backbone of DNA, causing
a different variety of lesions, induding base
free sites or apurinic sites (AP sites) where
the base has been removed by oxidant-medi-
ated reactions. An indicator of such damage
is the presence of free bases in urine. Another
indicator for radical attack on the DNA
backbone is the fragmentation of deoxyri-
bose. Single strand breaks occur via hydro-
gen abstraction at the C-4 position, leading
to oxidation of the sugar moiety. This may
be coupled with a second sugar oxidation on
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the complimentary strand, causing a double
strand break. Strand breaks in the DNA
molecule may prove mutagenic or even lethal
for the cell. (79).

Repair of oxidative DNA damage.
There are a variety of cellular defense mech-
anisms that are designed to protect the
genome from radical attack or repair oxida-
tive damage. Some of these defenses include
compartmentalization of the sensitive target
molecules (81) and shielding of nonreplicat-
ing DNA by histones and polyamines (6). If
protection of the genetic material is not suc-
cessful, cellular regulatory mechanisms such
as apoptotic induction and inhibition of cell
cycle progression may prevent transfer of
genetic damage to daughter cells (81).
Alternatively, DNA repair processes may

correct the damage. Excision repair is per-
formed by enzymes such as DNA glycosy-
lases and AP endonucleases and occurs
before replication, while postreplication
repair provides a method for repairing
lesions during or after the replication
process. Both of these processes are believed
to be constitutive and inducible (85). Unlike
the repair of damaged bases, many of the
processes that are involved in repair of
strand breaks are not fully understood (81).
Antioxidant Defenses in
Eukaryotes
To prevent damage to cellular components,
there are numerous enzymatic antioxidant
defenses designed to scavenge ROS in the
cell. Superoxide dismutases (SODs) are

enzymes that scavenge 02- by a rapid dis-
mutation reaction (k>O9 M-'sec-) (1):

SOD20Oj + 2 H+ - H202 + 02 (9)

There are three SOD isoforms in eukaryotes:
manganese SOD (Mn-SOD), copper/zinc
SOD (Cu/Zn-SOD), and extracellular SOD
(EC-SOD) (41). Mn-SOD, which contains
a manganese prosthetic group, resides in the
mitochondria, perhaps because of the need
to protect mitochondrial proteins, mem-
branes, and DNA from 02- generated as a
result of the respiratory chain. The Cu/Zn-
SOD, containing copper and zinc prosthetic
groups, is a cytosolic SOD. EC-SOD, also
containing copper and zinc prosthetic
groups, is secreted and binds to the plasma
membrane and heparin-containing elements
of the extracellular matrix (86). All forms of
SODs are thought to dismutate O02- via a
ping-pong mechanism whereby the transi-
tion metal prosthetic group is reduced by
O02-' forming 02 The metal in the prosthet-
ic group is then immediately re-oxidized by
another 02- molecule, resulting in the pro-
duction ofH202 (17).

As mentioned previously, the produc-
tion of H202 within the cell may lead to
the production ofHO and subsequent cel-
lular damage via the metal-catalyzed
Haber-Weiss reaction. Thus, it is impor-
tant to remove H202. Catalase, a man-
ganese or heme-containing enzyme, func-
tions to rapidly dismutate H202 to water
and oxygen (k>107 M'1 sec-1) (87):

CAT
2 H202 -*2 H20 + 02 (10)

Catalase is mainly found in peroxisomes,
perhaps because of the large number of
H202-producing oxidases found in these
organelles, while lower levels are also found
in mitochondria and the cytosol. Several
reports suggest that catalase can metabolize
alkyl peroxides, such as methyl hydroper-
oxide and ethyl hydroperoxide in addition
to H202 (88), but these events are thought
to be an insignificant component of the
activity of the enzyme (89).
A third enzymatic antioxidant, GPx, cat-

alyzes the reduction of organic peroxides
(ROOH), which are potential radical form-
ing species within the cell. Glutathione
(GSH), a nonenzymatic antioxidant, provides
the reducing equivalents needed by GPx to
carry out the reduction of organic peroxides
to the corresponding alcohols and water:

Figure 3. Mechanisms of formation of the common DNA lesions 2,6-diamino-4-hydroxy-5-formamidopy-
rimidine (FapyGua) and 8-hydroxy-2'-deoxyguanosine (8-OHdG). Adapted from Cadet (165).

12 G-S-H + R-0-0 H
G-S-S-G + R-O-H + H20
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There are several cytosolic, selenium-
containing GPxs as well as an extracellular
form. These enzymes also have high affini-
ty for H202 and may be important for
maintenance of low intracellular levels of
H202 in the cytosol (88), where catalase
levels are low. An enzyme important to the
function of GPx is glutathione reductase
(GR), which reduces oxidized glutathione
(GSSG, glutathione disulfide) in the pres-
ence ofNADPH in order to regenerate lev-
els ofGSH (90,91):

GR
G-S-S-G + NADPH + H+ >

2 G-S-H + NADP+ (12)

Levels of antioxidant enzymes, induding
SODs, catalases, GPx, and GR, are low in
the extracellular space (50,92). Similarly,
plasma levels of SODs and catalases are par-
ticularly low when compared to intracellular
levels (92). Thus, a diverse array of small
molecule, nonenzymatic antioxidants com-
plete an efficient network of intra- and extra-
cellular defenses necessary to modulate the
levels of ROS. Nonenzymatic antioxidants
may be classified in terms of their location
and mode of action. Some small molecule
antioxidants can act by scavenging oxidants
or chelating transition metal ions (93).

Lipid soluble membrane-bound antioxi-
dants are efficient in preventing oxidative
damage to biomolecules. Vitamin E is an
important lipid soluble antioxidant present in
cells, as it is the major chain terminating
antioxidant in biological membranes (94)
and scavenges a wide array ofROS including
102, HO, 02- peroxyl, and alkoxyl radicals.
Vitamin E is composed ofa number of deriv-
atives of tocopherols and tocotrienols. The
major isomer in humans is a-TOH, which
also possesses the greatest antioxidant activity
of any vitamin E derivative. In homogeneous
solutions, a-TOH is a strong inhibitor of
polyunsaturated lipid peroxidation (52) and
in vivo, most of the cellular vitamin E is con-
centrated in the lipid membranes (95,96).
The peimary antioxidant activity of toco-
pherols is to stop chain propagation of perox-
yl radicals (k = 6 x 103 - 3 x 106 M` sec-')
(97). Tocopherols can typically scavenge two
ROS per tocopherol molecule (98).

Other lipid soluble antioxidants con-
tribute to the protection of lipid bilayers from
oxidative stress. Ubiquinol Qlo, which plays
an important role in mitochondrial electron
transport (99), acts as a potent antioxidant in
lipoproteins (92 and other lipid membranes
(100). Ubiquinols are redox active quinone
derivatives with a hydrophobic isoprenyl tail.
They can rapidly react with oxygen, peroxyl,
and alkoxyl radicals, preventing initiation of
biomolecule damage. Ubiquinol can also

directly interact with a-TO, regenerating
active a-TOH (101). Carotenoids are also
lipid soluble antioxidants that are present in
lipid membranes. Two of the main
carotenoids, a- and P-carotene, serve as pro-
vitamin A analogues and are effective antioxi-
dants as 102 quenchers and peroxyl radical
scavengers (102).

Ascorbic acid (vitamin C), a water solu-
ble antioxidant, exists primarily as ascorbate
at physiological pH. Ascorbate is a powerful
reducing agent capable of rapidly scavenging
a number of ROS including O2- (k = 2.7 x
105 M'sec-1) (103,104). In addition, ascor-
bate reacts with other cellular prooxidants
such as '02, hypochlorous acid (HOCI), and
thiol radicals (RS) (103,105), Ascorbate is
also able to reduce the vitamin E derived a-
TO. Through this mechanism, ascorbate in
the aqueous phase is able to regenerate mem-
brane-bound a-TOH, prolonging the life-
time of this important antioxidant in the
lipid phase and effecting removal of the radi-
cal from the lipid to the aqueous phase. In its
action as an antioxidant, ascorbate is rapidly
oxidized to dehydroascorbate, which shows
lirtle antioxidant activity. Dehydroascorbate
may be reduced back to ascorbate via a
GSH-dependent reductase (106).

In addition to acting as a reducing agent,
GSH also provides antioxidant protection in
the aqueous phase of cellular systems. GSH
is synthesized in several different cell types
and is present intracellularly in millimolar
concentrations, making it the most abundant
thiol with levels up to 10 mM (90). The cys-
teine thiol moiety of GSH imparts the
antioxidant activity of this molecule. Like
ascorbate, GSH can directly reduce a num-
ber reactive oxygen species including '02,
HO, and 02- and GSH is oxidized to
GSSG in this process. Relatively high ratios
ofGSH/GSSG are maintained intracellularly
through the action of GR in an NADPH-
dependent reaction (90,91). As mentioned
previously, GSH also acts as a substrate or
cosubstrate in many essential enzymatic reac-
tions, such as with the antioxidant enzyme
GPx. Thus, the depletion of GSH during
oxidative stress could have a significant
impact on the antioxidant poise within a cell.

It should be noted that antioxidants
also have the potential to act as prooxidants
under certain conditions. For example,
ascorbate, in the presence of a high concen-
tration of ferric iron (Fe3+), is a potent
potentiator of lipid peroxidation. This
behavior results from the reduction of Fe3+
to Fe2+ by the strong reducing agent ascor-
bate (107), enabling redox cycling of the
iron. Other antioxidants may behave simi-
larly; Okada et al. (108) demonstrated the
physiologic relevance of such reactions in
the proximal tubule of ddY mice exposed

to Fe3+-nitrilotriacetate. The release of cys-
teine during the hydrolysis of GSH in the
tubule, followed by the reduction of Fe3+
by this cysteine, appears to lead to lipid
peroxidation in the proximal tubule.

Piscine Systems as Models for
Oxidative Stress Studies
Typically, mammalian species have been
used as models to study oxidative stress and
to elucidate the mechanisms behind cellu-
lar damage and response, largely because of
the interest in human health issues sur-
rounding oxidative stress. However, the
aquatic environment provides a sink for
many environmental contaminants that
have the potential to cause oxidative stress
in aquatic organisms. Some common pol-
lutants in this category include polyaromat-
ic hydrocarbons (PAHs), polychlorinated
biphenyls (PCBs), quinones, aromatic nitro
compounds, aromatic hydroxylamines,
bipyridyls, and transition metals (14).
These compounds may cause adverse
effects in aquatic organisms (e.g., lipid and
DNA damage). Thus, a better understand-
ing of oxidative stress in aquatic organisms
is essential to understanding the impacts of
these pollutants on aquatic systems.

However, with the growing interest in
oxidative toxicity, the potential benefits of
using fish as model organisms to study
oxidative stress reach beyond applications to
aquatic ecotoxicology. The similarities in the
types of oxidative damage and defenses
between mammalian and piscine systems
suggest that fish can provide model systems
for further understanding how ROS damage
cellular components, how cells respond to
and repair this damage, and how oxidative
damage can lead to disease. This type of
information could lead to the development
of more sensitive markers for exposure and
toxicity, and these markers may prove
invaluable for evaluating subtle effects of
oxidative stress, such as genotoxicity (35), in
both mammalian and aquatic systems.
Additionally, fish may provide an alternative
system to rodents for evaluating the link
between exposure and effect for diseases
related to oxidative toxicity. For example, in
some populations of aquatic organisms, the
link between neoplasia and environmental
pollution is more obvious than that in mam-
malian studies (109). Combined with other
benefits, such as the potential for decreased
cost, the ability to directly observe embryon-
ic development in some fish species, and the
advent of transgenic fish, piscine systems
have the potential to provide suitable and
beneficial models for studying oxidative
stress in vertebrate systems and may help to
bridge the gap between ecological and
human health issues in oxidative toxicology.
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Lipid peroxidation and DNA damage
as indicators of oxidative stress. In both
mammalian and piscine systems, oxidative
stress causes toxic and adaptive responses
within a cell (14). Toxic responses include
damage to cellular components such as
lipid peroxidation and DNA damage, as
described earlier. In mammalian systems,
transition metals are a classic source of rad-
ical generation and subsequent cellular
damage. Lipid peroxidation has been used
as a measure of this xenobiotic-induced
oxidative stress. For example, iron and/or
copper have been shown to induce lipid
peroxidation in rat hepatocytes (110), rat
testes (111), macrophages (112), and rat
liver mitochondria (113).

Lipid peroxidation has also been used as
an indicator of oxidative damage in fish. In a
study of Atlantic croaker (Micropogonias
undulatus), cadmium exposure resulted in
an increase in MDA levels in homogenates
of hepatic and ovarian tissues and in micro-
somes. Similarly, Aroclor 1254 caused an
increase in MDA in croaker liver in vivo and
in vitro, as well as in ovarian homogenates
(32). Parihar and Dubey (114) found that
freshwater Indian catfish (Heteropneustesfos-
silis) exposed to a temperature increase
(from 25 to 37°C) exhibited significant
increases in MDA levels in gill and air sac
tissues. A different study in channel catfish
(Ictalurus punctatus) evaluated lipid peroxi-
dation following exposure to sediments con-
taminated with aromatic hydrocarbons. At
all time points evaluated, the concentration
of MDA in hepatic tissue was significandy
elevated in fish exposed to contaminated
sediments as compared to fish exposed to
noncontaminated sediments (115).

Oxidative damage to DNA is another
consequence of oxidative stress that has
been used as a marker of this phenomenon.
There are numerous recent reports in the
literature indicating that iron exposure
leads to DNA damage via oxidative mecha-
nisms in mammalian systems. Examples of
such studies include DNA-protein cross-
links in a murine cell line (116), as well as
8-OHdG in the rat testis (111) and human
pulmonary epithelia after exposure to
asbestos (117). The iron-associating prop-
erties of asbestos are also related to double-
strand DNA breaks in pulmonary epithelia
(118), and double-strand breaks caused by
iron complexed with certain chelators, such
as 8-hydroxyquinolone, have been demon-
strated in human lung (119). Similarly,
copper causes elevated levels of 8-OHdG
in rat liver and kidney (120), DNA-pro-
tein cross-linking in human lymphocytes
(121), and increased levels of 8-OHdG in
murine keratinocytes exposed to copper
and benzoyl peroxide (122).

As with lipid peroxidation, oxidative
damage to DNA has received increasing
attention in aquatic organisms in recent
years. For example, juvenile English sole
(Parophrys vetulus) treated with nitrofuran-
toin, a known redox cycling xenobiotic,
demonstrated an increase in hepatic 8-
OHdG (123). Another DNA lesion linked
to oxidative stress and recently found in
fish is FapyGua. Malins et al. (124) found
the FapyGua lesion in the DNA of neo-
plastic hepatic tissues of feral fish (English
sole) but not in the nonneoplastic tissues.
A similar study of feral English sole also
found that fish from sites contaminated
with PAHs and PCBs showed a high
degree of hepatic DNA damage in the form
of 8-OH adducts of guanine and adenine
as well as FapyGua (125). These studies on
lipid peroxidation and oxidative DNA
damage demonstrate that mammals and
fish exhibit similar lesions and that the
markers used to detect toxic consequences
of oxidative stress in mammalian systems
are also useful in piscine models.

Cellular defenses. Fish exhibit many of
the same defenses against oxidative stress as
do mammals, suggesting that fish and mam-
malian systems have similar cellular respons-
es to oxidative stress. These defenses include
both low molecular weight free radical scav-
engers such as GSH, ot-TOH, and ascorbic
acid, as well as enzymatic defenses such as
SOD, catalase, and GPx (35,126). Many
studies in the aquatic literature provide base-
line information for comparative purposes
and have been reviewed by Winston and Di
Giulio (35). It is clear from these studies
that there is a significant degree of variation
in the basal activities of antioxidant defenses
between fish species, and much of this work
has focused on enzymatic defenses. In com-
parison to other vertebrate systems, fish
appear to exhibit lower basal activities of
SOD and catalase, but have increased activi-
ties of GPx (127-131) and this should be
taken into consideration when designing
studies with fish.

Several studies in mammals and fish
have demonstrated the importance of
antioxidant defenses in protecting cells and
organisms from oxidative damage and toxi-
city. For instance, tocopherol diminished
lipid peroxidation in rat hepatocytes treated
with iron and copper (110) and in rat lung
and liver treated with iron (132), while
both tocopherol and P-carotene were effec-
tive at reducing hepatic lipid peroxidation
in rats fed high iron diets (133). In aquatic
systems, studies have centered more on the
effects of depleting antioxidant defenses
rather than the effects of supplementation
as seen in mammalian studies. For instance,
a study of blue gill sunfish BF-2 fibroblasts

showed that depletion of GSH by agents
such as buthionine sulfoximine, maleic
acid, or 1-chloro-2,4-dinitrobenzene
increased the toxicity of H202 and nitrofu-
rantoin to fibroblasts. Furthermore, inhibi-
tion of SOD with diethyldithiocarbamate
also enhanced the toxicity of H202 and
paraquat (134). In freshwater Indian cat-
fish, a decline in levels of ascorbic acid fol-
lowing temperature stress was correlated
with an increase in lipid peroxidation in gill
and air sac membranes, suggesting that
ascorbic acid plays a protective role in pre-
venting lipid peroxidation (114), perhaps
through regeneration of tocopherol.
Williams et al. (135) examined the impor-
tance of vitamin E in protecting rainbow
trout (Oncorhynchus mykiss) from lipid per-
oxidation. Feeding trout a vitamin E-defi-
cient diet resulted in an 18-fold decrease in
liver microsomal levels of vitamin E and a
significant increase in susceptibility to Fe3+-
ascorbate dependent lipid peroxidiation
(measured as MDA) in liver microsomes.
Additionally, vitamin E depletion also
enhanced the amount of lipid hydroperox-
ides generated in vivo as seen in extracts of
microsomes and plasma (135).

In addition to providing protection in
both mammalian and piscine systems,
some of the low molecular weight ROS
scavengers and enzymatic antioxidant
defenses are responsive to challenge with
compounds that cause oxidative stress (i.e.,
they are induced), representing an adaptive
consequence of exposure. In mammals,
numerous studies have demonstrated that
antioxidant enzymes are up regulated, par-
ticularly in response to toxicant-induced
inflammation. The most studied of these
enzymes is Mn-SOD, the activity and tran-
scription of which is increased following
exposure to toxins such as asbestos (136)
and lipopolysaccharide (137), as well as
inflammatory cytokines such as TNF-a
(136). Similarly, phagocytosis of particulate
matter leads to increased SOD activity in
macrophages (138). Cu/Zn-SOD, EC-
SOD, and glutathione-related enzymes are
less commonly up regulated following toxic
exposures, but lipopolysaccharide has been
shown to induce transcription of both GPx
and Cu/Zn-SOD (139), while toxicants
that induce the inflammatory cytokine
IFN-y may up regulate transcription and
secretion ofEC-SOD (140,141).

Similar responses have been reported in
aquatic species, and these may serve as bio-
markers of exposure for certain compounds
in aquatic organisms (14). For instance,
Pedrajas et al. (142) found that sea bream
(Sparus aurata) treated with copper chloride
demonstrated increased SOD activity. Otto
and Moon (143) found that PCBs altered
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antioxidant defenses in trout by demon-
strating that trout treated with 3,3',4,4-
tetrachlorobiphenyl showed increased GPx,
GR, SOD, and catalase activities as well as
increases in GSH and GSSG.

Notably, sometimes reductions are seen
in the levels of antioxidants with or without
an increase in others. For example, in a
study of channel catfish exposed to
bleached kraft mill effluent, the fish exhibit-
ed increased hepatic catalase activity and
decreased hepatic GSH (33). Similarly,
Thomas and Wofford (32) showed that
Atlantic croaker exposed to cadmium
exhibited a decrease in GPx activity and
ascorbic acid content in hepatic and ovarian
tissues while croaker in the same study
exposed to Aroclor 1254 showed an
increase in GPx activity in hepatic and
ovarian tissues without any change in ascor-
bic acid content of either tissue. While not
necessarily an adaptive response, a decrease
in levels of antioxidant defenses is biologi-
cally significant and can also serve as a
marker of oxidative stress. Combined with
the presence of antioxidant inductions, it
may be possible to develop a response pro-
file indicative ofsome xenobiotics.

Field studies. In addition to laboratory
studies, field studies are common for evalu-
ating the impacts of oxidative stress in nat-
ural populations. Measurements of lipid and
DNA damage combined with changes in
the levels of antioxidant defenses can serve as
a means of detecting exposure to xenobiotics
that induce oxidative stress. However, the
choice of end points in field studies of fish
may be complicated by a history of exposure
to xenobiotics causing oxidative stress. For
instance, grey mullet (Mugil sp.) collected
from an estuary polluted with metals, PAHs,
PCBs, and pesticides demonstrated evidence
of oxidative stress as indicated by oxidized
glutathione redox status. However, these
fish did not show elevated MDA levels while
showing elevated activities of antioxidant
enzymes (GPx, SOD, catalase, GR). It is
possible that an adaptive response had
occurred and that repair of lipid peroxida-
tion may have taken place (144).

Because the response of the organism
may be xenobiotic and tissue specific, it is
also important to examine several end
points. Otto and Moon (145) compared
brown bullhead (Ameriurus nebulosus) that
were collected from a system polluted with
PCBs to bullhead collected from a relative-
ly nonpolluted aquatic system. Fish from
the polluted site had a 22-fold increase in
PCB concentrations in white muscle com-
pared to fish from the nonpolluted site.
Cytosolic SOD activity was increased in
the kidney of fish from the polluted site.
Conversely, catalase activity in the kidney,

GPx activity in the red and white muscle,
and total glutathione in the liver, kidney,
and white muscle were decreased relative to
fish from the nonpolluted site. Studies such
as these advocate the use of a group of end
points when evaluating oxidative stress in
feral organisms.

Oxidative stress and disease. The link
between oxidative stress and disease is also of
interest to oxidative stress toxicology. Cancer
is one disease for which fish may be especial-
ly well suited to serve as model organisms,
and the appeal of using fish as models for
studying the molecular basis of carcinogensis
is growing. The benefits of using rainbow
trout in addition to rodent models when
evaluating environmental carcinogesis have
been discussed by Bailey et. al. (146,147).
Some of these benefits include low rearing
costs that enable quantitative studies with as
many as 10,000 fish as well as well-described
tumor pathology. Xiphophorus fish models
have been used to study the roles of genetics
and UV radiation in melanoma tumorigene-
sis (148-151). Studies of oncogenes and
tumor suppressor genes have also been con-
ducted in fish. For instance, two ras genes are
expressed in rainbow trout liver, and both
contain a high degree of homology to the
human ras genes. The predicted amino acid
sequence of trout ras-1 suggests a highly con-
served protein and suggests that the function
of the ras p21 protein is the same in both
higher and lower vertebrates (152). Similarly,
the tumor suppressor gene p53 has been
doned in Japanese medaka (Oryzias latipes)
(153) and rainbow trout (154) and shown to
be strongly conserved in functional domains
critical to tumor suppressor function in other
vertebrates, induding humans. Furthermore,
Winn et. al. (155) have created transgenic
medaka and mummichog (Fundulus hetero-
clitus) that contain multiple copies of the
bacteriophage Phi X174am3cs70 that will
enable comparisons of mutations in the same
target gene sequence across species following
xenobiotic exposure.

Studies that pertain specifically to the
role of oxidative stress in cancer have also
been conducted in fish. For instance, com-
parative studies between fish species have
been done that evaluate changes in antioxi-
dant defenses that may be linked to disease
etiology. Channel catfish, which seldom
express pollutant-mediated neoplasms, and
brown bullhead, which often exhibit neo-
plasms in contaminated waters, differ gready
in their glutathione-dependent defense sys-
tems. Channel catfish have higher levels of
hepatic GSH and y-glutamylcysteine syn-
thase activity, while bullhead have more
hepatic GSSG and increased GPx activity
(34). In a comparative study with mena-
dione (a quinone) as the toxicant, channel

catfish exhibited a more rapid induction of
total glutathione than did bullhead, likely
due to the increased hepatic y-glutamylcys-
teine synthase activity. Furthermore, when
challenged with an organic peroxide (tert-
butyl hydroperoxide), hepatic GSH was
depleted in bullhead but not in channel cat-
fish. This difference in GSH depletion was
attributed to the differences in glutathione
peroxidase and glutathione reductase activi-
ties between species (34). A different study of
the same two fish species exposed to l-naph-
thoflavone showed that catfish exhibited sig-
nificantly higher hepatic catalase and GR
activities as well as total glutathione content,
whereas bullhead exhibited higher hepatic
GPx activity. Catfish showed higher levels of
menadione-mediated cytosolic *02- and
H202 production, whereas bullhead demon-
strated higher rates of 02- and H202 pro-
duction in microsomes. Liver homogenate
from bullhead was also less effective at
inhibiting Fe3+-ascorbate-mediated produc-
tion of 8-OHdG (156). The results from
these two studies suggest that differences in
antioxidant poise may result in differential
abilities to defend against certain types of
oxidative stress and may account for the dif-
ference in susceptibility to cancer between
these two species (34,156).

Other studies have linked oxidative
DNA damage to neoplasms in fish. As
mentioned previously, the FapyGua lesion
has been found in the DNA of neoplastic
hepatic lesions in English sole (124), and
hepatic DNA damage, in the form of both
8-OH adducts of guanine and adenine as
well as FapyGua, has been reported in a
population of English sole contaminated
with PAHs and PCBs that also show a high
incidence of liver cancer (125). The com-
parative studies of antioxidant poise in cat-
fish, the studies on DNA damage in
English sole, the demonstration of con-
served oncogenes and tumor suppressor
genes between mammals and fish, and
advances in the use of fish as models for
carcinogenicity suggest that markers of
oxidative stress may be predictive of cancer
risk in some instances and that fish may be
useful in further elucidating the mecha-
nisms of carcinogenesis.

Conclusions
Oxidative stress comprises an important
aspect of toxicology and, consequently, has
received increasing attention in recent years.
During this time, research has moved from
observing the effects of oxidative stress at the
level of the organism to elucidating the mech-
anisms behind the responses and damages
seen at the cellular and biochemical levels.
Much of the research on oxidative stress has
taken place in mammalian models as the
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interest in oxidative stress has centered pri-
marily around human health issues.
However, increasing evidence suggests that
oxidative stress is also of ecological signifi-
cance, particularly in the aquatic environ-
ment which provides a sink for many pollu-
tants capable of causing oxidative stress.
Comparing the data available for both mam-
malian and piscine systems demonstrates that
the toxic and adaptive mechanisms of oxida-
tive stress are similar across species. This sug-
gests that fish may serve as good biomonitor-
ing tools, and, in addition to mammals, may
provide useful models for further research
into understanding oxidative stress.

There are several advantages to using
piscine systems to study oxidative stress, such
as the reduction in the number of mammals
used in research, the potential for a reduction
in the cost of animal maintenance, and the
ability to increase the power of the experi-
ment by increasing the number of organisms
per study. Additionally, the developmental
biology of some fish species, such as zebra
fish (Brachydanio rerio) and mummichog,
have been well studied (157-159). These
species provide excellent models for studying
the developmental aspects of oxidative stress
toxicology, as the growing embryo can be
observed throughout development.
Moreover, most fish species are oviparous,
enabling the evaluation of development in
isolation as fertilization and development
occur externally. With the recent advent of
transgenic fish (160-162) comes the poten-
tial to perform knock-out experiments and
evaluate how oxidative stress may influence
gene expression in piscine models.
Furthermore, the use of piscine models to
study oxidative stress allows for the evalua-
tion of environmental issues from both a
human health and ecological perspective.

Many research opportunities still exist in
oxidative stress toxicology and present the
occasion to study oxidative stress in piscine
systems. For example, little is known specifi-
cally about the repair processes that are uti-
lized by cells to repair damage induced by
oxidative stress. In addition to aiding in the
understanding ofhow cells cope with oxida-
tive damage, these processes may involve
inducible enzymes or other responses that
could serve as biomarkers of exposure or
effect. Similarly, in light of evidence that
oxidative stress can damage DNA and
gametes, the impact of oxidative stress on
processes such as reproduction and develop-
ment warrants further study. Finally, there is
still a need for research that definitively links
oxidative stress and disease. Performing
these studies in fish will increase our knowl-
edge of oxidative stress mechanisms while
expanding the ability tO generalize the phe-
nomenon of OXidative stress across species.
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